异步协程开发指南:构建高性能的推荐系统

2024-01-15 0 591

随着互联网及移动互联网的快速发展,数据量呈爆炸式增长,如何高效处理数据成为了各大公司研发团队面对的一个重要问题。推荐系统是其中的一个关键应用领域,在众多企业中有着广泛的应用。而异步协程是一个在高并发场景下实现高性能数据处理的重要技术,本文将介绍如何利用异步协程构建高性能的推荐系统,并提供具体的代码示例。

一、什么是异步协程?

异步协程是一种非常高效的并发编程模型,最初由 Python 语言提出并实现,后经过多个语言的借鉴和发展,如 Go 语言中的 goroutine,Swift 中的 SwiftNIO 等。异步协程通过在协程级别上进行切换,以支持高并发的异步 I/O 操作。

与多线程相比,异步协程具有以下优势:

  1. 更加高效:异步协程可以实现非常轻量级的线程模型,切换开销非常小。
  2. 更加灵活:协程之间的切换不需要进入内核,而是由程序控制,因此可以更加灵活地控制协程的数量和调度方式。
  3. 更加易用:相比于多线程的锁机制,异步协程通过协作式调度可以避免锁等多线程问题,使得代码更加简洁易用。

二、推荐系统中的异步协程应用场景

推荐系统在实现过程中需要处理大量的数据,例如用户行为日志、物品属性信息等,而异步协程则可以实现高性能的数据处理。具体地,推荐系统中有以下应用场景适合使用异步协程:

  1. 用户兴趣特征提取:通过异步协程实现对用户行为日志的异步读取和处理,提取用户兴趣特征,以支持个性化推荐。
  2. 物品信息聚合:通过异步协程实现对物品属性信息的异步读取和处理,将各种信息聚合在一起,以支持物品的综合推荐。
  3. 推荐结果排序:通过异步协程实现对推荐结果的快速排序和过滤,以保证推荐系统的高吞吐量和低延迟。

三、异步协程开发指南

下面将分别从协程开发流程、调度机制和异步 I/O 操作三个方面介绍异步协程的开发指南。

  1. 协程开发流程

在异步协程中,需要使用协程库来实现协程的创建、切换和调度等。目前比较流行的协程库有 Python 中的 asyncio,Go 中的 goroutine 和 Swift 中的 SwiftNIO 等。

以 Python 中的 asyncio 为例,实现一个简单的异步协程程序:

import asyncio

async def foo():
    await asyncio.sleep(1)
    print('Hello World!')

loop = asyncio.get_event_loop()
loop.run_until_complete(foo())

上述程序中,asyncio.sleep(1) 表示让当前协程休眠 1 秒钟,以模拟异步 I/O 操作,async def 声明的函数表示异步函数。在程序中使用 loop.run_until_complete() 来运行协程,输出结果为 Hello World!

  1. 调度机制

在异步协程中,协程的调度是非常重要的一环。通过异步协程的协作式调度,可以更加灵活地控制协程的数量和调度顺序,以达到最优的性能表现。

在 asyncio 中,使用 asyncio.gather() 方法来执行多个协程,例如:

import asyncio

async def foo():
    await asyncio.sleep(1)
    print('foo')

async def bar():
    await asyncio.sleep(2)
    print('bar')

loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.gather(foo(), bar()))

上述程序中,asyncio.gather() 可以同时执行多个协程,输出结果为 foo 和 bar。这里的两个协程的时间长度分别为 1 秒和 2 秒,因此输出顺序为 foo 和 bar

  1. 异步 I/O 操作

在推荐系统中,需要使用异步 I/O 操作来处理大量的用户行为日志、物品属性信息等数据。在异步协程中使用异步 I/O 操作可以大大提高数据读取和处理的效率。

在 asyncio 中,使用 asyncio.open() 方法来异步读取文件,例如:

import asyncio

async def read_file():
    async with aiofiles.open('data.log', 'r') as f:
        async for line in f:
            print(line.strip())

loop = asyncio.get_event_loop()
loop.run_until_complete(read_file())

上述程序中,使用 async with aiofiles.open() 来异步打开文件,使用 async for line in f 来异步读取文件中的每行数据。在程序中使用 loop.run_until_complete() 来运行协程。

四、具体代码示例

下面具体介绍推荐系统中异步协程的实现方法。

  1. 用户兴趣特征提取

在推荐系统中,用户兴趣特征提取是一个非常关键的环节。用户行为日志是推荐系统中的重要数据之一,因此需要使用异步 I/O 来进行行为日志的读取和处理,以提取用户兴趣特征。

import asyncio
import json

async def extract_feature(data):
    result = {}
    for item in data:
        uid = item.get('uid')
        if uid not in result:
            result[uid] = {'click': 0, 'expose': 0}
        if item.get('type') == 'click':
            result[uid]['click'] += 1
        elif item.get('type') == 'expose':
            result[uid]['expose'] += 1
    return result

async def read_file():
    async with aiofiles.open('data.log', 'r') as f:
        data = []
        async for line in f:
            data.append(json.loads(line))
            if len(data) >= 1000:
                result = await extract_feature(data)
                print(result)
                data = []

        if len(data) > 0:
            result = await extract_feature(data)
            print(result)

loop = asyncio.get_event_loop()
loop.run_until_complete(read_file())

上述程序中,extract_feature() 函数用于从用户行为日志中提取用户兴趣特征,read_file() 函数读取用户行为日志,并调用 extract_feature() 函数进行用户特征提取。在程序中,使用 if len(data) >= 1000 判断每次读取到的数据是否满足处理的条件。

  1. 物品信息聚合

在推荐系统中,物品信息的聚合是支持物品的综合推荐的必要环节。物品属性信息是推荐系统中的重要数据之一,因此需要使用异步 I/O 来进行读取和处理。

import asyncio
import json

async def aggregate_info(data):
    result = {}
    for item in data:
        key = item.get('key')
        if key not in result:
            result[key] = []
        result[key].append(item.get('value'))
    return result

async def read_file():
    async with aiofiles.open('data.log', 'r') as f:
        data = []
        async for line in f:
            data.append(json.loads(line))
            if len(data) >= 1000:
                result = await aggregate_info(data)
                print(result)
                data = []

        if len(data) > 0:
            result = await aggregate_info(data)
            print(result)

loop = asyncio.get_event_loop()
loop.run_until_complete(read_file())

上述程序中,aggregate_info() 函数用于从物品属性信息中聚合物品信息,read_file() 函数读取物品属性信息,并调用 aggregate_info() 函数进行信息聚合。在程序中,使用 if len(data) >= 1000 判断每次读取到的数据是否满足处理的条件。

  1. 推荐结果排序

在推荐系统中,推荐结果的排序是支持高吞吐量和低延迟的关键环节。通过异步协程进行推荐结果的排序和过滤,可以大大提高推荐系统的性能表现。

import asyncio

async def sort_and_filter(data):
    data.sort(reverse=True)
    result = []
    for item in data:
        if item[1] > 0:
            result.append(item)
    return result[:10]

async def recommend():
    data = [(1, 2), (3, 4), (2, 5), (7, 0), (5, -1), (6, 3), (9, 8)]
    result = await sort_and_filter(data)
    print(result)

loop = asyncio.get_event_loop()
loop.run_until_complete(recommend())

上述程序中,sort_and_filter() 函数用于对推荐结果进行排序和过滤,并只返回前 10 个结果。recommend() 函数用于模拟推荐结果的生成,调用 sort_and_filter() 函数进行结果排序和过滤。在程序中,使用 0 或者 0 以下的值来模拟不需要的结果。

总结

本文介绍了异步协程的基本知识和在推荐系统中的应用,并提供了具体的代码示例。异步协程作为一种高效的并发编程技术,在大数据场景下具有广泛的应用前景。需要注意的是,在实际应用中,需要根据具体的业务需求和技术场景进行针对性的选择和调优,以达到最优的性能表现。

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

免责声明
1. 本站所有资源来源于用户上传和网络等,如有侵权请邮件联系本站整改team@lcwl.fun!
2. 分享目的仅供大家学习和交流,您必须在下载后24小时内删除!
3. 不得使用于非法商业用途,不得违反国家法律。否则后果自负!
4. 本站提供的源码、模板、插件等等其他资源,都不包含技术服务请大家谅解!
5. 如有链接无法下载、失效或广告,请联系本站工作人员处理!
6. 本站资源售价或VIP只是赞助,收取费用仅维持本站的日常运营所需!
7. 如遇到加密压缩包,请使用WINRAR解压,如遇到无法解压的请联系管理员!
8. 因人力时间成本问题,部分源码未能详细测试(解密),不能分辨部分源码是病毒还是误报,所以没有进行任何修改,大家使用前请进行甄别!
9.本站所有源码资源都是经过本站工作人员人工亲测可搭建的,保证每个源码都可以正常搭建,但不保证源码内功能都完全可用,源码属于可复制的产品,无任何理由退款!

网站搭建源码网 PHP 异步协程开发指南:构建高性能的推荐系统 https://www.xuezuoweb.com/2887.html

常见问题
  • 本站所有的源码都是经过平台人工部署搭建测试过可用的
查看详情
  • 购买源码资源时购买了带主机的套餐是指可以享受源码和所选套餐型号的主机两个产品,在本站套餐里开通主机可享优惠,最高免费使用主机
查看详情

相关文章

发表评论
暂无评论
官方客服团队

为您解决烦忧 - 24小时在线 专业服务

Fa快捷助手
手机编程软件开发

在手机上用手点一点就能轻松做软件

去做软件
链未云主机
免备案香港云主机

开通主机就送域名的免备案香港云主机

去使用